(x^2+8)-6(9+x)=54

Simple and best practice solution for (x^2+8)-6(9+x)=54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+8)-6(9+x)=54 equation:



(x^2+8)-6(9+x)=54
We move all terms to the left:
(x^2+8)-6(9+x)-(54)=0
We add all the numbers together, and all the variables
(x^2+8)-6(x+9)-54=0
We multiply parentheses
(x^2+8)-6x-54-54=0
We get rid of parentheses
x^2-6x+8-54-54=0
We add all the numbers together, and all the variables
x^2-6x-100=0
a = 1; b = -6; c = -100;
Δ = b2-4ac
Δ = -62-4·1·(-100)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{109}}{2*1}=\frac{6-2\sqrt{109}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{109}}{2*1}=\frac{6+2\sqrt{109}}{2} $

See similar equations:

| 1/8s=4 | | 5^2x+1=125 | | 2x^2-18x-4/4x=7 | | 2(x-7)^2=98 | | (x^2+8)-6(9+×)=-54 | | n^2+32n=0 | | 0.8+w=5 | | Y2+3y-1=0 | | 2(x/7)^2=98 | | 1x+87=2x+93 | | (y^2+6)-7(8+y)=-62 | | -3x=9-6x | | (x^2+2)-8(3+x)=-34 | | S^2+39s=0 | | -6(9-y)+2(2y+6)=4(y+2) | | (y^2+4)-5(7+y)=-7 | | D^2+25d=0 | | 4c+1/4=5/4 | | 6/7x+1/2x=-1/14 | | (z^2+7)-4(8+z)=-20 | | 2x+86=106 | | (x^2)-(8x)+(19)=0 | | 7(3x+12)=2(4x-10) | | (y^2+6)-2(8+y)=53 | | 0=-x^2+75x-1200 | | 2.5=3x | | T^2-23t-24=0 | | (x^2+5)-8(2+x)=-23 | | -w+6w=9/2+52/4 | | 4x+17=-5 | | v=1/3(3.14)(3^2)(4) | | (z^2+5)-2(7+z)=-6 |

Equations solver categories